PLEASE HELP ASAP Determine the value of k in y=-x^2+4x +k that will result in the intersection of the line y=8x--2 with the quadratic at
a) two points
b) one point
c) no points
The first thing we must do in this case is to equal both functions: -x ^ 2 + 4x + k = 8x-2 We rewrite the function: -x ^ 2 + 4x + k - 8x + 2 = 0 -x ^ 2 -4x + (k + 2) = 0 We use the resolver: x = (- b +/- root (b ^ 2 - 4 * a * c)) / 2 * a x = (- (- 4) +/- root ((- 4) ^ 2 - 4 * (- 1) * (k + 2))) / 2 * (- 1) x = (4 +/- root (16 + 4 * (1) * (k + 2))) / - 2
a) two points 16 + 4 * (1) * (k + 2)> 0 (k + 2)> -16/4 (k + 2)> -4 k> -4 -2 k> -6 b) one point 16 + 4 * (1) * (k + 2) = 0 (k + 2) = -16/4 (k + 2) = -4 k = -4 -2 k = -6 c) no points 16 + 4 * (1) * (k + 2) <0 (k + 2) <-16/4 (k + 2) <-4 k <-4 -2 k <-6