Respuesta :
As a Bernoulli equation:
[tex]x^2\dfrac{\mathrm dy}{\mathrm dx}=6y^2+6xy\iff x^2y^{-2}\dfrac{\mathrm dy}{\mathrm dx}-6xy^{-1}=6[/tex]
Let [tex]z=y^{-1}\implies\dfrac{\mathrm dz}{\mathrm dx}=-y^{-2}\dfrac{\mathrm dy}{\mathrm dx}[/tex]. The ODE becomes
[tex]-x^2\dfrac{\mathrm dz}{\mathrm dx}-6xz=6[/tex]
[tex]x^6\dfrac{\mathrm dz}{\mathrm dx}+6x^5z=-6x^4[/tex]
[tex]\dfrac{\mathrm d}{\mathrm dx}[x^6z]=-6x^4[/tex]
[tex]x^6z=-6\displaystyle\int x^4\,\mathrm dx[/tex]
[tex]x^6z=-\dfrac65x^5+C[/tex]
[tex]z=-\dfrac6{5x}+\dfrac C{x^6}[/tex]
[tex]y^{-1}=-\dfrac6{5x}+\dfrac C{x^6}[/tex]
[tex]y=\dfrac1{\frac C{x^6}-\frac6{5x}}[/tex]
[tex]y=\dfrac{5x^6}{C-6x^5}[/tex]
With [tex]y(3)=6[/tex], we get
[tex]6=\dfrac{5(3)^6}{C-6(3)^5}\implies C=\dfrac{4131}2[/tex]
so the solution is
[tex]y=\dfrac{5x^6}{\frac{4131}2-6x^5}=\dfrac{10x^6}{4131-12x^5}[/tex]
which is valid as long as the denominator is not zero, which is the case for all [tex]x\neq\sqrt[5]{\dfrac{4131}{12}}[/tex].
[tex]x^2\dfrac{\mathrm dy}{\mathrm dx}=6y^2+6xy\iff x^2y^{-2}\dfrac{\mathrm dy}{\mathrm dx}-6xy^{-1}=6[/tex]
Let [tex]z=y^{-1}\implies\dfrac{\mathrm dz}{\mathrm dx}=-y^{-2}\dfrac{\mathrm dy}{\mathrm dx}[/tex]. The ODE becomes
[tex]-x^2\dfrac{\mathrm dz}{\mathrm dx}-6xz=6[/tex]
[tex]x^6\dfrac{\mathrm dz}{\mathrm dx}+6x^5z=-6x^4[/tex]
[tex]\dfrac{\mathrm d}{\mathrm dx}[x^6z]=-6x^4[/tex]
[tex]x^6z=-6\displaystyle\int x^4\,\mathrm dx[/tex]
[tex]x^6z=-\dfrac65x^5+C[/tex]
[tex]z=-\dfrac6{5x}+\dfrac C{x^6}[/tex]
[tex]y^{-1}=-\dfrac6{5x}+\dfrac C{x^6}[/tex]
[tex]y=\dfrac1{\frac C{x^6}-\frac6{5x}}[/tex]
[tex]y=\dfrac{5x^6}{C-6x^5}[/tex]
With [tex]y(3)=6[/tex], we get
[tex]6=\dfrac{5(3)^6}{C-6(3)^5}\implies C=\dfrac{4131}2[/tex]
so the solution is
[tex]y=\dfrac{5x^6}{\frac{4131}2-6x^5}=\dfrac{10x^6}{4131-12x^5}[/tex]
which is valid as long as the denominator is not zero, which is the case for all [tex]x\neq\sqrt[5]{\dfrac{4131}{12}}[/tex].